SERIES, < 45 KRad/Si - TID, Commercial Space

Crystal Oscillator | 3.3V | LVDS | 5x3.2mm Ceramic SMD | SmallSat-CubeSat

5x3.2 mm 6 pad Ceramic SMD Package

0.197 ±0.008

(5.0 ±0.2)

0.75 - (1.90) MAX

Features

- Hi-Rel Design and Manufacture
- Proven High Shock Crystal Support
- ECCN EAR 99

- Customer Support & Service
- High-Shock & Vibration Configuration
- Small Hi-Rel Package

- Mission Life Duration Choice
- Designed for > 20,000 Hours Life at +125°C

US Ma	anufact	ture
-------	---------	------

standard

marking

shown

- **Design & Configuration Control**
- Radiation Test Data Available upon Request

Mechanical SPECIFICATIONS

Frequency

Part Number YYWW

←0.276 ±0.008 **≻** (7.0 ±0.2)

Side View

Electrical SPECIFICATIONS

■ Mission Success | Life Options 6 Months to 5 Years

Mission L	ife / Scree	ning Code	Frequency	Supply	Rise/Fall	Symmetry	Aging	Freque	ncy Stability	/ Vs. Tempe	rature	
6 Months to 1 year	1 Year to 2 years	3 Years to 5 years	Range (MHz)	Current @ 3.3V ±10% (mA)	Time (tr/tf) max (nsec)	min / max (%)	per year max <u>1</u> / (ppm)	-55°C to +125°C (ppm)	-55°C to +125°C (ppm)	-40°C to +105°C (ppm)	-40°C to +85°C (ppm)	
CODE	CODE	CODE						CODE A	CODE B	CODE	CODE	♥ stability vs.
01	02	03	80 to	1.1	3	40/60	±10	±100	±65	±50	±40	temperature code
04	05	06	1 to 7.9	1.3	3	40/60	±10	±100	±65	±50	±40	coue
07	80	09	8 to 15.9	3	3	40/60	±10	±100	±65	±50	±40	
11	12	13	16 to 49.9	6	2	40/60	±10	±100	±65	±50	±40	
14	15	16	50 to 74.9	8	2	40/60	±10	±100	±65	±50	±40	
17	18	19	75 to 94.9	16	2	40/60	±10	±100	±65	±50	±40	
21	22	23	to 250	25	2	40/60	±10	±100	±65	±50	±40	

See reverse side for screening details

LVDS Output, 100 Ω Differential Load Output Voltage - Logic "0" is 0.9V max "Lo"

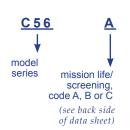
Output Voltage - Logic "1" is 1.6V max "Hi" Start-up Time: 10 msec max 1/ Frequency Aging Limit

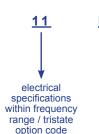
Max change over 30 days ±1.5 ppm ±10 ppm

Projected max change for 1 year after 30 days

0.055 (1.40) -	→ ← 2	3	
TYP			
	(j	0.102 (2.60) TYF

0.047-	6 5	<u> </u>	
(1.10)	← 0.200) →	
TYP	(5.08)	
	TYP		

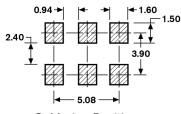

Bottom View


Please Contact Us for Specification Options that are Outside of or beyond those Shown in the Table Above

Standard	Pin Number	Function
PAD CONFIGURATION	1	Ourput Enable (Tri-state)*
* Enable, Logic 1 Disable, Logic 0	2	Ground (case)
Terminate any unused pads,	3	Output
(they are not terminated internally).	4	Supply V (Vcc)

How To ORDER

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2008 **Pb-free RoHS Certified**



example:

C56A11D-80M00000

Soldering Position

Lower than 3.3 Volt versions of our 5x3.2 mm SMD Crystal Oscillator for Commercial Satellite are available, please inquire!

Screening	Method Options:	Α	В	
Non-Destruct Bond Pull	MIL-STD-883, Method 2023			
Internal Visual	MIL-STD-883, Method 2017	•	•	
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	•	
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•	•	
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)		•	
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max			
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1			
	MIL-STD-202, Method 112, Condition C, 111A		•	
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	•	
Electrical Test	Functional Test Only at +23°C	•	•	
Marking & Serialization	MIL-STD-1285	•	•	
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes		•	
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min		•	
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min	•		
Interim Electrical	Functional Test Only			
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min			
b) Frequency stability is tested	ncy, output waveform, are tested at +23°C ±2°C over the specified temperature range; at both minimum of 5 temperature increments is by lot # and then serial #	•	•	
Radiography	MIL-STD-883, Method 2012			
Frequency Aging	MIL-PRF-55310, +70°C Condition			
Frequency/Temperature Stability	MIL-PRF-55310, Over temperature extremes, 20 points equally spaced			
External Visual & Mechanical	MIL-STD-883, Method 2009	•	•	

•	Designed Specifically for Lower-cost Space Missions				
SmallSat	SmallSat CubeSat				

Environmental	COMPI	IANCE
Environmental	CUIVIPL	IANGE

Environmental	Specification	Method	Condition	
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Random
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5 ms
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis
Thermal Shock	MIL-STD-202	Method 107	Condition B	

continued...

Environmental	Specification	Method	Condition
Ambient Pressure	MIL-STD-202	Method 105	Condition C
Resistance to Soldering Heat	MIL-STD-202	Method 210	Condition C
Moisture Resistance	MIL-STD-202	Method 106	with 7B Sub-cycle
Salt Atmosphere (corrosion)	MIL-STD-883	Method 1009	Condition A (24 hrs)
Terminal Strength	MIL-STD-202	Method 211	Test Condition D
Solderability	MIL-STD-883	Method 2003	
Resistance to Solvents	MIL-STD-202	Method 215	

note: other options, screening levels and custom test plans available.

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2008 Pb-free RoHS Certified

Military Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534 Hybrid Microcircuits, General Specification For
MIL-STD-202 Test Method Standard, Electronic and Electrical Components
Test Methods and Procedures for Microelectronics
MIL-STD-1686 Electrostatic Discharge Control Program for Protection of
Electrical and Electronic Parts, Assemblies and Equipment

Materials

- 1. Package Materials: Ceramic, Alumina 90% min
- 2. External Lead Plating Material: Gold plated Kovar, 0.15 μ m (60 μ inch) min, over 2.0 μ m (80 μ inch) min Nickel

Products for Space Applications

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

Issue 11 12192023

Ph. 714 373 8100 Fx. 714 373 8700